Development:MediaWiki TeX test: различия между версиями
1>Stronk7 Нет описания правки |
м 1 версия импортирована |
(нет различий)
|
Текущая версия от 08:51, 21 октября 2024
This should look like some maths:
<math>\int_{-\infty}^\infty \psi^{-x^{tim}}\,dx = \sqrt{hunt^4}</math>
(This page was created for the benefit of MDLSITE-649.)
Heavy test:
Functions, symbols, special characters
Accents/Diacritics | |
---|---|
\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}
|
<math>\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}\,\!</math> |
\check{a} \bar{a} \ddot{a} \dot{a}
|
<math>\check{a} \bar{a} \ddot{a} \dot{a}\!</math> |
Standard functions | |
\sin a \cos b \tan c
|
<math>\sin a \cos b \tan c\!</math> |
\sec d \csc e \cot f
|
<math>\sec d \csc e \cot f\,\!</math> |
\arcsin h \arccos i \arctan j
|
<math>\arcsin h \arccos i \arctan j\,\!</math> |
\sinh k \cosh l \tanh m \coth n\!
|
<math>\sinh k \cosh l \tanh m \coth n\!</math> |
\operatorname{sh}\,o\,\operatorname{ch}\,p\,\operatorname{th}\,q\!
|
<math>\operatorname{sh}\,o\,\operatorname{ch}\,p\,\operatorname{th}\,q\!</math> |
\operatorname{arsinh}\,r\,\operatorname{arcosh}\,s\,\operatorname{artanh}\,t
|
<math>\operatorname{arsinh}\,r\,\operatorname{arcosh}\,s\,\operatorname{artanh}\,t\,\!</math> |
\lim u \limsup v \liminf w \min x \max y\!
|
<math>\lim u \limsup v \liminf w \min x \max y\!</math> |
\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\!
|
<math>\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\!</math> |
\deg h \gcd i \Pr j \det k \hom l \arg m \dim n
|
<math>\deg h \gcd i \Pr j \det k \hom l \arg m \dim n\!</math> |
Modular arithmetic | |
s_k \equiv 0 \pmod{m}
|
<math>s_k \equiv 0 \pmod{m}\,\!</math> |
a\,\bmod\,b
|
<math>a\,\bmod\,b\,\!</math> |
Derivatives | |
\nabla \, \partial x \, dx \, \dot x \, \ddot y\, dy/dx\, \frac{dy}{dx}\, \frac{\partial^2 y}{\partial x_1\,\partial x_2}
|
<math>\nabla \, \partial x \, dx \, \dot x \, \ddot y\, dy/dx\, \frac{dy}{dx}\, \frac{\partial^2 y}{\partial x_1\,\partial x_2}</math> |
Sets | |
\forall \exists \empty \emptyset \varnothing
|
<math>\forall \exists \empty \emptyset \varnothing\,\!</math> |
\in \ni \not \in \notin \subset \subseteq \supset \supseteq
|
<math>\in \ni \not \in \notin \subset \subseteq \supset \supseteq\,\!</math> |
\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus
|
<math>\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus\,\!</math> |
\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup
|
<math>\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup\,\!</math> |
Operators | |
+ \oplus \bigoplus \pm \mp -
|
<math>+ \oplus \bigoplus \pm \mp - \,\!</math> |
\times \otimes \bigotimes \cdot \circ \bullet \bigodot
|
<math>\times \otimes \bigotimes \cdot \circ \bullet \bigodot\,\!</math> |
\star * / \div \frac{1}{2}
|
<math>\star * / \div \frac{1}{2}\,\!</math> |
Logic | |
\land (or \and) \wedge \bigwedge \bar{q} \to p
|
<math>\land \wedge \bigwedge \bar{q} \to p\,\!</math> |
\lor \vee \bigvee \lnot \neg q \And
|
<math>\lor \vee \bigvee \lnot \neg q \And\,\!</math> |
Root | |
\sqrt{2} \sqrt[n]{x}
|
<math>\sqrt{2} \sqrt[n]{x}\,\!</math> |
Relations | |
\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=}
|
<math>\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=}\,\!</math> |
\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto
|
<math>\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto\,\!</math> |
Geometric | |
\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ
|
45^\circ\,\!</math> |
Arrows | |
\leftarrow (or \gets) \rightarrow (or \to) \nleftarrow \nrightarrow \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow
|
<math>\leftarrow \rightarrow \nleftarrow \not\to \leftrightarrow \nleftrightarrow \longleftarrow \longrightarrow \longleftrightarrow \,\!</math> |
\Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow (or \iff)
|
<math>\Leftarrow \Rightarrow \nLeftarrow \nRightarrow \Leftrightarrow \nLeftrightarrow \Longleftarrow \Longrightarrow \Longleftrightarrow \!</math> |
\uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow \nearrow \searrow \swarrow \nwarrow
|
<math>\uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow \nearrow \searrow \swarrow \nwarrow \!</math> |
\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons
|
<math>\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons \,\!</math> |
\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright
|
<math>\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright \,\!</math> |
\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft
|
<math>\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft \,\!</math> |
\mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow
|
<math>\mapsto \longmapsto \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \,\!</math> |
Special | |
\And \eth \S \P \% \dagger \ddagger \ldots \cdots
|
<math>\And \eth \S \P \% \dagger \ddagger \ldots \cdots\,\!</math> |
\smile \frown \wr \triangleleft \triangleright \infty \bot \top
|
<math>\smile \frown \wr \triangleleft \triangleright \infty \bot \top\,\!</math> |
\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar
|
<math>\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar\,\!</math> |
\ell \mho \Finv \Re \Im \wp \complement
|
<math>\ell \mho \Finv \Re \Im \wp \complement\,\!</math> |
\diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp
|
<math>\diamondsuit \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp\,\!</math> |
Unsorted (new stuff) | |
\vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown
|
<math> \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown</math> |
\blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge
|
<math> \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge\!</math> |
\veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes
|
<math> \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes</math> |
\rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant
|
<math> \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant</math> |
\eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq
|
<math> \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq</math> |
\fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft
|
<math> \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft</math> |
\Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot
|
<math> \Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot</math> |
\ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq
|
<math> \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq</math> |
\Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork
|
<math> \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork</math> |
\varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq
|
<math> \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq</math> |
\lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid
|
<math> \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid</math> |
\nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr
|
<math> \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr</math> |
\subsetneq
|
<math>\subsetneq</math> |
\ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq
|
<math> \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq</math> |
\succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq
|
<math> \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq</math> |
\nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq
|
<math> \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq</math> |
\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus
|
<math>\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus\,\!</math> |
\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq
|
<math>\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq\,\!</math> |
\dashv \asymp \doteq \parallel
|
<math>\dashv \asymp \doteq \parallel\,\!</math> |
\ulcorner \urcorner \llcorner \lrcorner
|
<math>\ulcorner \urcorner \llcorner \lrcorner</math> |
Larger Expressions
Subscripts, superscripts, integrals
Feature | Syntax | How it looks rendered | |
---|---|---|---|
HTML | PNG | ||
Superscript | a^2 |
<math>a^2</math> | <math>a^2 \,\!</math> |
Subscript | a_2 |
<math>a_2</math> | <math>a_2 \,\!</math> |
Grouping | a^{2+2} |
<math>a^{2+2}</math> | <math>a^{2+2}\,\!</math> |
a_{i,j} |
<math>a_{i,j}</math> | <math>a_{i,j}\,\!</math> | |
Combining sub & super without and with horizontal separation | x_2^3 |
<math>x_2^3</math> | <math>x_2^3 \,\!</math> |
{x_2}^3 |
<math>{x_2}^3</math> | <math>{x_2}^3 \,\!</math> | |
Super super | 10^{10^{ \,\!{8} } |
<math>10^{10^{ \,\! 8 } }</math> | |
Super super | 10^{10^{ \overset{8}{} }} |
<math>10^{10^{ \overset{8}{} }}</math> | |
Super super (wrong in HTML in some browsers) | 10^{10^8} |
<math>10^{10^8}</math> | |
Preceding and/or Additional sub & super | \sideset{_1^2}{_3^4}\prod_a^b |
<math>\sideset{_1^2}{_3^4}\prod_a^b</math> | |
{}_1^2\!\Omega_3^4 |
<math>{}_1^2\!\Omega_3^4</math> | ||
Stacking | \overset{\alpha}{\omega} |
<math>\overset{\alpha}{\omega}</math> | |
\underset{\alpha}{\omega} |
<math>\underset{\alpha}{\omega}</math> | ||
\overset{\alpha}{\underset{\gamma}{\omega}} |
<math>\overset{\alpha}{\underset{\gamma}{\omega}}</math> | ||
\stackrel{\alpha}{\omega} |
<math>\stackrel{\alpha}{\omega}</math> | ||
Derivative (forced PNG) | x', y'', f', f''\! |
<math>x', y, f', f\!</math> | |
Derivative (f in italics may overlap primes in HTML) | x', y'', f', f'' |
<math>x', y, f', f</math> | <math>x', y, f', f\!</math> |
Derivative (wrong in HTML) | x^\prime, y^{\prime\prime} |
<math>x^\prime, y^{\prime\prime}</math> | <math>x^\prime, y^{\prime\prime}\,\!</math> |
Derivative (wrong in PNG) | x\prime, y\prime\prime |
<math>x\prime, y\prime\prime</math> | <math>x\prime, y\prime\prime\,\!</math> |
Derivative dots | \dot{x}, \ddot{x} |
<math>\dot{x}, \ddot{x}</math> | |
Underlines, overlines, vectors | \hat a \ \bar b \ \vec c |
<math>\hat a \ \bar b \ \vec c</math> | |
\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} |
<math>\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}</math> | ||
\overline{g h i} \ \underline{j k l} |
<math>\overline{g h i} \ \underline{j k l}</math> | ||
Arrows | A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C |
<math> A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C</math> | |
Overbraces | \overbrace{ 1+2+\cdots+100 }^{5050} |
<math>\overbrace{ 1+2+\cdots+100 }^{5050}</math> | |
Underbraces | \underbrace{ a+b+\cdots+z }_{26} |
<math>\underbrace{ a+b+\cdots+z }_{26}</math> | |
Sum | \sum_{k=1}^N k^2 |
<math>\sum_{k=1}^N k^2</math> | |
Sum (force \textstyle ) |
\textstyle \sum_{k=1}^N k^2 |
<math>\textstyle \sum_{k=1}^N k^2</math> | |
Product | \prod_{i=1}^N x_i |
<math>\prod_{i=1}^N x_i</math> | |
Product (force \textstyle ) |
\textstyle \prod_{i=1}^N x_i |
<math>\textstyle \prod_{i=1}^N x_i</math> | |
Coproduct | \coprod_{i=1}^N x_i |
<math>\coprod_{i=1}^N x_i</math> | |
Coproduct (force \textstyle ) |
\textstyle \coprod_{i=1}^N x_i |
<math>\textstyle \coprod_{i=1}^N x_i</math> | |
Limit | \lim_{n \to \infty}x_n |
<math>\lim_{n \to \infty}x_n</math> | |
Limit (force \textstyle ) |
\textstyle \lim_{n \to \infty}x_n |
<math>\textstyle \lim_{n \to \infty}x_n</math> | |
Integral | \int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx |
<math>\int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx</math> | |
Integral (alternate limits style) | \int_{1}^{3}\frac{e^3/x}{x^2}\, dx |
<math>\int_{1}^{3}\frac{e^3/x}{x^2}\, dx</math> | |
Integral (force \textstyle ) |
\textstyle \int\limits_{-N}^{N} e^x\, dx |
<math>\textstyle \int\limits_{-N}^{N} e^x\, dx</math> | |
Integral (force \textstyle , alternate limits style) |
\textstyle \int_{-N}^{N} e^x\, dx |
<math>\textstyle \int_{-N}^{N} e^x\, dx</math> | |
Double integral | \iint\limits_D \, dx\,dy |
<math>\iint\limits_D \, dx\,dy</math> | |
Triple integral | \iiint\limits_E \, dx\,dy\,dz |
<math>\iiint\limits_E \, dx\,dy\,dz</math> | |
Quadruple integral | \iiiint\limits_F \, dx\,dy\,dz\,dt |
<math>\iiiint\limits_F \, dx\,dy\,dz\,dt</math> | |
Line or path integral | \int_C x^3\, dx + 4y^2\, dy |
<math>\int_C x^3\, dx + 4y^2\, dy</math> | |
Closed line or path integral | \oint_C x^3\, dx + 4y^2\, dy |
<math>\oint_C x^3\, dx + 4y^2\, dy</math> | |
Intersections | \bigcap_1^n p |
<math>\bigcap_1^n p</math> | |
Unions | \bigcup_1^k p |
<math>\bigcup_1^k p</math> |
Fractions, matrices, multilines
Feature | Syntax | How it looks rendered |
---|---|---|
Fractions | \frac{2}{4}=0.5 |
<math>\frac{2}{4}=0.5</math> |
Small Fractions | \tfrac{2}{4} = 0.5 |
<math>\tfrac{2}{4} = 0.5</math> |
Large (normal) Fractions | \dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a |
<math>\dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a</math> |
Large (nested) Fractions | \cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a |
<math>\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a</math> |
Binomial coefficients | \binom{n}{k} |
<math>\binom{n}{k}</math> |
Small Binomial coefficients | \tbinom{n}{k} |
<math>\tbinom{n}{k}</math> |
Large (normal) Binomial coefficients | \dbinom{n}{k} |
<math>\dbinom{n}{k}</math> |
Matrices | \begin{matrix} x & y \\ z & v \end{matrix} |
<math>\begin{matrix} x & y \\ z & v \end{matrix}</math> |
\begin{vmatrix} x & y \\ z & v \end{vmatrix} |
<math>\begin{vmatrix} x & y \\ z & v \end{vmatrix}</math> | |
\begin{Vmatrix} x & y \\ z & v \end{Vmatrix} |
<math>\begin{Vmatrix} x & y \\ z & v \end{Vmatrix}</math> | |
\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} |
<math>\begin{bmatrix} 0 & \cdots & 0 \\ \vdots
& \ddots & \vdots \\ 0 & \cdots & 0\end{bmatrix} </math> |
|
\begin{Bmatrix} x & y \\ z & v \end{Bmatrix} |
<math>\begin{Bmatrix} x & y \\ z & v \end{Bmatrix}</math> | |
\begin{pmatrix} x & y \\ z & v \end{pmatrix} |
<math>\begin{pmatrix} x & y \\ z & v \end{pmatrix}</math> | |
\bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr) |
<math>
\bigl( \begin{smallmatrix} a&b\\ c&d \end{smallmatrix} \bigr) </math> |
|
Case distinctions | f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases} |
<math>f(n) =
\begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd}\end{cases} </math> |
Multiline equations | \begin{align} f(x) & = (a+b)^2 \\ & = a^2+2ab+b^2 \\ \end{align} |
<math>
\begin{align} f(x) & = (a+b)^2 \\ & = a^2+2ab+b^2 \\ \end{align} </math> |
\begin{alignat}{2} f(x) & = (a-b)^2 \\ & = a^2-2ab+b^2 \\ \end{alignat} |
<math>
\begin{alignat}{2} f(x) & = (a-b)^2 \\ & = a^2-2ab+b^2 \\ \end{alignat} </math> |
|
Multiline equations (must define number of colums used ({lcr}) (should not be used unless needed) | \begin{array}{lcl} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} |
<math>\begin{array}{lcl}
z & = & a \\ f(x,y,z) & = & x + y + z\end{array}</math> |
Multiline equations (more) | \begin{array}{lcr} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} |
<math>\begin{array}{lcr}
z & = & a \\ f(x,y,z) & = & x + y + z\end{array}</math> |
Breaking up a long expression so that it wraps when necessary, at the expense of destroying correct spacing | <math>f(x) \,\!</math> <math>= \sum_{n=0}^\infty a_n x^n </math> <math>= a_0+a_1x+a_2x^2+\cdots</math> |
<math>f(x) \,\!</math><math>= \sum_{n=0}^\infty a_n x^n </math><math>= a_0 +a_1x+a_2x^2+\cdots</math> |
Simultaneous equations | \begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases} |
<math>\begin{cases} 3x + 5y + z \\ 7x - 2y + 4z \\ -6x + 3y + 2z \end{cases}</math> |
Arrays | \begin{array}{|c|c||c|} a & b & S \\ \hline 0&0&1\\ 0&1&1\\ 1&0&1\\ 1&1&0\\ \end{array} |
<math>
\begin{array}{|c|c||c|} a & b & S \\ \hline 0&0&1\\ 0&1&1\\ 1&0&1\\ 1&1&0\\ \end{array} </math> |
Parenthesizing big expressions, brackets, bars
Feature | Syntax | How it looks rendered |
---|---|---|
Bad | ( \frac{1}{2} )
|
<math>( \frac{1}{2} )</math> |
Good | \left ( \frac{1}{2} \right )
|
<math>\left ( \frac{1}{2} \right )</math> |
You can use various delimiters with \left and \right:
Feature | Syntax | How it looks rendered |
---|---|---|
Parentheses | \left ( \frac{a}{b} \right )
|
<math>\left ( \frac{a}{b} \right )</math> |
Brackets | \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack
|
<math>\left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack</math> |
Braces | \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace
|
<math>\left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace</math> |
Angle brackets | \left \langle \frac{a}{b} \right \rangle
|
<math>\left \langle \frac{a}{b} \right \rangle</math> |
Bars and double bars | \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|
|
\frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|</math> |
Floor and ceiling functions: | \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil
|
<math>\left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil</math> |
Slashes and backslashes | \left / \frac{a}{b} \right \backslash
|
<math>\left / \frac{a}{b} \right \backslash</math> |
Up, down and up-down arrows | \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow
|
<math>\left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow</math> |
Delimiters can be mixed, as long as \left and \right match |
\left [ 0,1 \right )</code> <br/> <code>\left \langle \psi \right |
|
</math> |
Use \left. and \right. if you don't want a delimiter to appear: |
\left . \frac{A}{B} \right \} \to X
|
<math>\left . \frac{A}{B} \right \} \to X</math> |
Size of the delimiters | \big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big]/ |
<math>\big( \Big( \bigg( \Bigg( \dots \Bigg] \bigg] \Big] \big]</math> |
\big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle
|
<math>\big\{ \Big\{ \bigg\{ \Bigg\{ \dots \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle</math> | |
\big\| \Big\| \bigg\| \Bigg\| \dots \Bigg| \bigg| \Big| \big|
|
\Big\| \bigg\| \Bigg\| \dots \Bigg| \bigg| \Big| \big|</math> | |
\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \dots \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil
|
<math>\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor \dots \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil</math> | |
\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow
|
<math>\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow</math> | |
\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow
|
<math>\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow</math> | |
\big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash
|
<math>\big / \Big / \bigg / \Bigg / \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash</math> |
Alphabets and typefaces
Texvc cannot render arbitrary Unicode characters. Those it can handle can be entered by the expressions below. For others, such as Cyrillic, they can be entered as Unicode or HTML entities in running text, but cannot be used in displayed formulas.
Greek alphabet | |
---|---|
\Alpha \Beta \Gamma \Delta \Epsilon \Zeta
|
<math>\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \,\!</math> |
\Eta \Theta \Iota \Kappa \Lambda \Mu
|
<math>\Eta \Theta \Iota \Kappa \Lambda \Mu \,\!</math> |
\Nu \Xi \Pi \Rho \Sigma \Tau
|
<math>\Nu \Xi \Pi \Rho \Sigma \Tau\,\!</math> |
\Upsilon \Phi \Chi \Psi \Omega
|
<math>\Upsilon \Phi \Chi \Psi \Omega \,\!</math> |
\alpha \beta \gamma \delta \epsilon \zeta
|
<math>\alpha \beta \gamma \delta \epsilon \zeta \,\!</math> |
\eta \theta \iota \kappa \lambda \mu
|
<math>\eta \theta \iota \kappa \lambda \mu \,\!</math> |
\nu \xi \pi \rho \sigma \tau
|
<math>\nu \xi \pi \rho \sigma \tau \,\!</math> |
\upsilon \phi \chi \psi \omega
|
<math>\upsilon \phi \chi \psi \omega \,\!</math> |
\varepsilon \digamma \vartheta \varkappa
|
<math>\varepsilon \digamma \vartheta \varkappa \,\!</math> |
\varpi \varrho \varsigma \varphi
|
<math>\varpi \varrho \varsigma \varphi\,\!</math> |
Blackboard Bold/Scripts | |
\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G}
|
<math>\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \,\!</math> |
\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M}
|
<math>\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} \,\!</math> |
\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T}
|
<math>\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} \,\!</math> |
\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}
|
<math>\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}\,\!</math> |
boldface (vectors) | |
\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G}
|
<math>\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} \,\!</math> |
\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M}
|
<math>\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} \,\!</math> |
\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T}
|
<math>\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} \,\!</math> |
\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z}
|
<math>\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} \,\!</math> |
\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g}
|
<math>\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} \,\!</math> |
\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m}
|
<math>\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} \,\!</math> |
\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t}
|
<math>\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} \,\!</math> |
\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z}
|
<math>\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} \,\!</math> |
\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4}
|
<math>\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} \,\!</math> |
\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}
|
<math>\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}\,\!</math> |
Boldface (greek) | |
\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta}
|
<math>\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} \,\!</math> |
\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}
|
<math>\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}\,\!</math> |
\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}
|
<math>\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}\,\!</math> |
\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}
|
<math>\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}\,\!</math> |
\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}
|
<math>\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}\,\!</math> |
\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}
|
<math>\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}\,\!</math> |
\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}
|
<math>\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}\,\!</math> |
\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}
|
<math>\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}\,\!</math> |
\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa}
|
<math>\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} \,\!</math> |
\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}
|
<math>\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}\,\!</math> |
Italics | |
\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G}
|
<math>\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} \,\!</math> |
\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M}
|
<math>\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} \,\!</math> |
\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T}
|
<math>\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} \,\!</math> |
\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z}
|
<math>\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} \,\!</math> |
\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g}
|
<math>\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} \,\!</math> |
\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m}
|
<math>\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} \,\!</math> |
\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t}
|
<math>\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} \,\!</math> |
\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z}
|
<math>\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} \,\!</math> |
\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4}
|
<math>\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} \,\!</math> |
\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}
|
<math>\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}\,\!</math> |
Roman typeface | |
\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G}
|
<math>\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} \,\!</math> |
\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M}
|
<math>\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} \,\!</math> |
\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T}
|
<math>\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} \,\!</math> |
\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z}
|
<math>\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} \,\!</math> |
\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}
|
<math>\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}\,\!</math> |
\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m}
|
<math>\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} \,\!</math> |
\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t}
|
<math>\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} \,\!</math> |
\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z}
|
<math>\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} \,\!</math> |
\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4}
|
<math>\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} \,\!</math> |
\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}
|
<math>\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}\,\!</math> |
Fraktur typeface | |
\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G}
|
<math>\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} \,\!</math> |
\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M}
|
<math>\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} \,\!</math> |
\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T}
|
<math>\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} \,\!</math> |
\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z}
|
<math>\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} \,\!</math> |
\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g}
|
<math>\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} \,\!</math> |
\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m}
|
<math>\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} \,\!</math> |
\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t}
|
<math>\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} \,\!</math> |
\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z}
|
<math>\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} \,\!</math> |
\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4}
|
<math>\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} \,\!</math> |
\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}
|
<math>\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}\,\!</math> |
Calligraphy/Script | |
\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G}
|
<math>\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \,\!</math> |
\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M}
|
<math>\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \,\!</math> |
\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T}
|
<math>\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \,\!</math> |
\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}
|
<math>\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}\,\!</math> |
Hebrew | |
\aleph \beth \gimel \daleth
|
<math>\aleph \beth \gimel \daleth\,\!</math> |
Feature | Syntax | How it looks rendered | |
---|---|---|---|
non-italicised characters | \mbox{abc} | <math>\mbox{abc}</math> | <math>\mbox{abc} \,\!</math> |
mixed italics (bad) | \mbox{if} n \mbox{is even} | <math>\mbox{if} n \mbox{is even}</math> | <math>\mbox{if} n \mbox{is even} \,\!</math> |
mixed italics (good) | \mbox{if }n\mbox{ is even} | <math>\mbox{if }n\mbox{ is even}</math> | <math>\mbox{if }n\mbox{ is even} \,\!</math> |
mixed italics (more legible: ~ is a non-breaking space, while "\ " forces a space) | \mbox{if}~n\ \mbox{is even} | <math>\mbox{if}~n\ \mbox{is even}</math> | <math>\mbox{if}~n\ \mbox{is even} \,\!</math> |
Color
Equations can use color:
{\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1}
- <math>{\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1}</math>
x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}
- <math>x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}</math>
See here for all named colors supported by LaTeX.
Note that color should not be used as the only way to identify something, because it will become meaningless on black-and-white media or for color-blind people. See en:Wikipedia:Manual of Style#Color coding.
Formatting issues
Spacing
Note that TeX handles most spacing automatically, but you may sometimes want manual control.
Feature | Syntax | How it looks rendered |
---|---|---|
double quad space | a \qquad b | <math>a \qquad b</math> |
quad space | a \quad b | <math>a \quad b</math> |
text space | a\ b | <math>a\ b</math> |
text space without PNG conversion | a \mbox{ } b | <math>a \mbox{ } b</math> |
large space | a\;b | <math>a\;b</math> |
medium space | a\>b | [not supported] |
small space | a\,b | <math>a\,b</math> |
no space | ab | <math>ab\,</math> |
small negative space | a\!b | <math>a\!b</math> |
Alignment with normal text flow
Due to the default css
img.tex { vertical-align: middle; }
an inline expression like <math>\int_{-N}^{N} e^x\, dx</math> should look good.
If you need to align it otherwise, use <math style="vertical-align:-100%;">...</math>
and play with the vertical-align
argument until you get it right; however, how it looks may depend on the browser and the browser settings.
Also note that if you rely on this workaround, if/when the rendering on the server gets fixed in future releases, as a result of this extra manual offset your formulae will suddenly be aligned incorrectly. So use it sparingly, if at all.
Forced PNG rendering
To force the formula to render as PNG, add \,
(small space) at the end of the formula (where it is not rendered). This will force PNG if the user is in "HTML if simple" mode, but not for "HTML if possible" mode.
You can also use \,\!
(small space and negative space, which cancel out) anywhere inside the math tags. This does force PNG even in "HTML if possible" mode, unlike \,
.
This could be useful to keep the rendering of formulae in a proof consistent, for example, or to fix formulae that render incorrectly in HTML (at one time, a^{2+2} rendered with an extra underscore), or to demonstrate how something is rendered when it would normally show up as HTML (as in the examples above).
For instance:
Syntax | How it looks rendered |
---|---|
a^{c+2} | <math>a^{c+2}</math> |
a^{c+2} \, | <math>a^{c+2} \,</math> |
a^{\,\!c+2} | <math>a^{\,\!c+2}</math> |
a^{b^{c+2}} | <math>a^{b^{c+2}}</math> (WRONG with option "HTML if possible or else PNG"!) |
a^{b^{c+2}} \, | <math>a^{b^{c+2}} \,</math> (WRONG with option "HTML if possible or else PNG"!) |
a^{b^{c+2}}\approx 5 | <math>a^{b^{c+2}}\approx 5</math> (due to "<math>\approx</math>" correctly displayed, no code "\,\!" needed) |
a^{b^{\,\!c+2}} | <math>a^{b^{\,\!c+2}}</math> |
\int_{-N}^{N} e^x\, dx | <math>\int_{-N}^{N} e^x\, dx</math> |
This has been tested with most of the formulae on this page, and seems to work perfectly.
You might want to include a comment in the HTML so people don't "correct" the formula by removing it:
- <!-- The \,\! is to keep the formula rendered as PNG instead of HTML. Please don't remove it.-->
Examples
Quadratic Polynomial
<math>ax^2 + bx + c = 0</math> <math>ax^2 + bx + c = 0</math>
Quadratic Polynomial (Force PNG Rendering)
<math>ax^2 + bx + c = 0\,\!</math> <math>ax^2 + bx + c = 0\,\!</math>
Quadratic Formula
<math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math> <math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math>
Tall Parentheses and Fractions
<math>2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)</math> <math>2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)</math>
<math>S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2}</math> <math>S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2}</math>
Integrals
<math>\int_a^x \!\!\!\int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy</math> <math>\int_a^x \!\!\!\int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy</math>
Summation
<math>\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}{3^m\left(m\,3^n+n\,3^m\right)}</math> <math>\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n} {3^m\left(m\,3^n+n\,3^m\right)}</math>
Differential Equation
<math>u + p(x)u' + q(x)u=f(x),\quad x>a</math> <math>u'' + p(x)u' + q(x)u=f(x),\quad x>a</math>
Complex numbers
<math>|\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z)</math> <math>|\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z)</math>
Limits
<math>\lim_{z\rightarrow z_0} f(z)=f(z_0)</math> <math>\lim_{z\rightarrow z_0} f(z)=f(z_0)</math>
Integral Equation
<math>\phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR</math> <math>\phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR</math>
Example
<math>\phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}</math> <math>\phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}</math>
Continuation and cases
<math>f(x) = \begin{cases}1 & -1 \le x < 0 \\ \frac{1}{2} & x = 0 \\ 1 - x^2 & \mbox{otherwise}\end{cases}</math> <math> f(x) = \begin{cases} 1 & -1 \le x < 0 \\ \frac{1}{2} & x = 0 \\ 1 - x^2 & \mbox{otherwise} \end{cases} </math>
Prefixed subscript
<math>{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n}\frac{z^n}{n!}</math> <math>{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n} \frac{z^n}{n!}</math>
Fraction and small fraction
<math> \frac {a}{b}</math> <math> \tfrac {a}{b} </math> <math> \frac {a}{b}\ \tfrac {a}{b} </math>
Unicode vs TeX comparison
unicode | TeX | See |
⟦ | [\![ | <math>[\![</math> |
{ | \{ | <math>\{</math> |
∥ | \| | <math>\|</math> |
} | \} | <math>\}</math> |
ℵ | \aleph | <math>\aleph</math> |
α | \alpha | <math>\alpha</math> |
⨿ | \amalg | <math>\amalg</math> |
∠ | \angle | <math>\angle</math> |
≈ | \approx | <math>\approx</math> |
∗ | \ast | <math>\ast</math> |
≍ | \asymp | <math>\asymp</math> |
\ | \backslash | <math>\backslash</math> |
β | \beta | <math>\beta</math> |
⋂ | \bigcap | <math>\bigcap</math> |
◯ | \bigcirc | <math>\bigcirc</math> |
⋃ | \bigcup | <math>\bigcup</math> |
⨀ | \bigodot | <math>\bigodot</math> |
⨁ | \bigoplus | <math>\bigoplus</math> |
⨂ | \bigotimes | <math>\bigotimes</math> |
⨆ | \bigsqcup | <math>\bigsqcup</math> |
▽ | \bigtriangledown | <math>\bigtriangledown</math> |
△ | \bigtriangleup | <math>\bigtriangleup</math> |
⨄ | \biguplus | <math>\biguplus</math> |
⋀ | \bigwedge | <math>\bigwedge</math> |
⋁ | \bigvee | <math>\bigvee</math> |
⊥ | \bot | <math>\bot</math> |
⋈ | \bowtie | <math>\bowtie</math> |
□ | \Box | <math>\Box</math> |
∙ | \bullet | <math>\bullet</math> |
∩ | \cap | <math>\cap</math> |
⋅ | \cdot | <math>\cdot</math> |
⋯ | \cdots | <math>\cdots</math> |
χ | \chi | <math>\chi</math> |
∘ | \circ | <math>\circ</math> |
♣ | \clubsuit | <math>\clubsuit</math> |
≅ | \cong | <math>\cong</math> |
∐ | \coprod | <math>\coprod</math> |
∪ | \cup | <math>\cup</math> |
† | \dagger | <math>\dagger</math> |
⊣ | \dashv | <math>\dashv</math> |
‡ | \ddagger | <math>\ddagger</math> |
⋱ | \ddots | <math>\ddots</math> |
δ | \delta | <math>\delta</math> |
Δ | \Delta | <math>\Delta</math> |
◇ | \Diamond | <math>\Diamond</math> |
⋄ | \diamond | <math>\diamond</math> |
♢ | \diamondsuit | <math>\diamondsuit</math> |
÷ | \div | <math>\div</math> |
≐ | \doteq | <math>\doteq</math> |
↓ | \downarrow | <math>\downarrow</math> |
⇓ | \Downarrow | <math>\Downarrow</math> |
ℓ | \ell | <math>\ell</math> |
∅ | \emptyset | <math>\emptyset</math> |
ϵ | \epsilon | <math>\epsilon</math> |
≡ | \equiv | <math>\equiv</math> |
η | \eta | <math>\eta</math> |
∃ | \exists | <math>\exists</math> |
♭ | \flat | <math>\flat</math> |
∀ | \forall | <math>\forall</math> |
⌢ | \frown | <math>\frown</math> |
γ | \gamma | <math>\gamma</math> |
Γ | \Gamma | <math>\Gamma</math> |
≥ | \ge | <math>\ge</math> |
≥ | \geq | <math>\geq</math> |
← | \gets | <math>\gets</math> |
≫ | \gg | <math>\gg</math> |
ℏ | \hbar | <math>\hbar</math> |
♡ | \heartsuit | <math>\heartsuit</math> |
↩ | \hookleftarrow | <math>\hookleftarrow</math> |
↪ | \hookrightarrow | <math>\hookrightarrow</math> |
ℑ | \Im | <math>\Im</math> |
ı | \imath | <math>\imath</math> |
∈ | \in | <math>\in</math> |
∞ | \infty | <math>\infty</math> |
∫ | \int | <math>\int</math> |
ι | \iota | <math>\iota</math> |
j | \jmath | <math>\jmath</math> |
κ | \kappa | <math>\kappa</math> |
λ | \lambda | <math>\lambda</math> |
Λ | \Lambda | <math>\Lambda</math> |
∧ | \land | <math>\land</math> |
⟨ | \langle | <math>\langle</math> |
⟪ | \langle\!\langle | <math>\langle\!\langle</math> |
{ | \lbrace | <math>\lbrace</math> |
[ | \lbrack | <math>\lbrack</math> |
⌈ | \lceil | <math>\lceil</math> |
≤ | \le | <math>\le</math> |
⇐ | \Leftarrow | <math>\Leftarrow</math> |
← | \leftarrow | <math>\leftarrow</math> |
↽ | \leftharpoondown | <math>\leftharpoondown</math> |
↼ | \leftharpoonup | <math>\leftharpoonup</math> |
↔ | \leftrightarrow | <math>\leftrightarrow</math> |
⇔ | \Leftrightarrow | <math>\Leftrightarrow</math> |
≤ | \leq | <math>\leq</math> |
⌊ | \lfloor | <math>\lfloor</math> |
≪ | \ll | <math>\ll</math> |
¬ | \lnot | <math>\lnot</math> |
⟸ | \Longleftarrow | <math>\Longleftarrow</math> |
⟵ | \longleftarrow | <math>\longleftarrow</math> |
⟺ | \Longleftrightarrow | <math>\Longleftrightarrow</math> |
⟷ | \longleftrightarrow | <math>\longleftrightarrow</math> |
⟼ | \longmapsto | <math>\longmapsto</math> |
⟹ | \Longrightarrow | <math>\Longrightarrow</math> |
⟶ | \longrightarrow | <math>\longrightarrow</math> |
∨ | \lor | <math>\lor</math> |
↦ | \mapsto | <math>\mapsto</math> |
∣ | \mid | <math>\mid</math> |
⊨ | \models | <math>\models</math> |
∓ | \mp | <math>\mp</math> |
μ | \mu | <math>\mu</math> |
∇ | \nabla | <math>\nabla</math> |
♮ | \natural | <math>\natural</math> |
≠ | \ne | <math>\ne</math> |
↗ | \nearrow | <math>\nearrow</math> |
¬ | \neg | <math>\neg</math> |
≠ | \neq | <math>\neq</math> |
∋ | \ni | <math>\ni</math> |
≉ | \not\approx | <math>\not\approx</math> |
≭ | \not\asymp | <math>\not\asymp</math> |
≇ | \not\cong | <math>\not\cong</math> |
≢ | \not\equiv | <math>\not\equiv</math> |
≱ | \not\geq | <math>\not\geq</math> |
≰ | \not\leq | <math>\not\leq</math> |
⊀ | \not\prec | <math>\not\prec</math> |
⋠ | \not\preceq | <math>\not\preceq</math> |
≁ | \not\sim | <math>\not\sim</math> |
≄ | \not\simeq | <math>\not\simeq</math> |
⋢ | \not\sqsubseteq | <math>\not\sqsubseteq</math> |
⋣ | \not\sqsupseteq | <math>\not\sqsupseteq</math> |
⊄ | \not\subset | <math>\not\subset</math> |
⊈ | \not\subseteq | <math>\not\subseteq</math> |
⊁ | \not\succ | <math>\not\succ</math> |
⋡ | \not\succeq | <math>\not\succeq</math> |
⊅ | \not\supset | <math>\not\supset</math> |
⊉ | \not\supseteq | <math>\not\supseteq</math> |
≠ | \not= | <math>\not=</math> |
ν | \nu | <math>\nu</math> |
↖ | \nwarrow | <math>\nwarrow</math> |
⊙ | \odot | <math>\odot</math> |
∮ | \oint | <math>\oint</math> |
ω | \omega | <math>\omega</math> |
Ω | \Omega | <math>\Omega</math> |
⊖ | \ominus | <math>\ominus</math> |
⊕ | \oplus | <math>\oplus</math> |
⊘ | \oslash | <math>\oslash</math> |
⊗ | \otimes | <math>\otimes</math> |
∥ | \parallel | <math>\parallel</math> |
∂ | \partial | <math>\partial</math> |
⊥ | \perp | <math>\perp</math> |
ϕ | \phi | <math>\phi</math> |
Φ | \Phi | <math>\Phi</math> |
π | \pi | <math>\pi</math> |
Π | \Pi | <math>\Pi</math> |
± | \pm | <math>\pm</math> |
≺ | \prec | <math>\prec</math> |
≼ | \preceq | <math>\preceq</math> |
′ | \prime | <math>\prime</math> |
∏ | \prod | <math>\prod</math> |
∝ | \propto | <math>\propto</math> |
ψ | \psi | <math>\psi</math> |
Ψ | \Psi | <math>\Psi</math> |
⟩ | \rangle | <math>\rangle</math> |
⟫ | \rangle\!\rangle | <math>\rangle\!\rangle</math> |
} | \rbrace | <math>\rbrace</math> |
] | \rbrack | <math>\rbrack</math> |
⌉ | \rceil | <math>\rceil</math> |
ℜ | \Re | <math>\Re</math> |
⌋ | \rfloor | <math>\rfloor</math> |
ρ | \rho | <math>\rho</math> |
→ | \rightarrow | <math>\rightarrow</math> |
⇒ | \Rightarrow | <math>\Rightarrow</math> |
⇁ | \rightharpoondown | <math>\rightharpoondown</math> |
⇀ | \rightharpoonup | <math>\rightharpoonup</math> |
⇌ | \rightleftharpoons | <math>\rightleftharpoons</math> |
↘ | \searrow | <math>\searrow</math> |
∖ | \setminus | <math>\setminus</math> |
♯ | \sharp | <math>\sharp</math> |
σ | \sigma | <math>\sigma</math> |
Σ | \Sigma | <math>\Sigma</math> |
∼ | \sim | <math>\sim</math> |
≃ | \simeq | <math>\simeq</math> |
⌣ | \smile | <math>\smile</math> |
♠ | \spadesuit | <math>\spadesuit</math> |
⊓ | \sqcap | <math>\sqcap</math> |
⊔ | \sqcup | <math>\sqcup</math> |
⊏ | \sqsubset | <math>\sqsubset</math> |
⊑ | \sqsubseteq | <math>\sqsubseteq</math> |
⊐ | \sqsupset | <math>\sqsupset</math> |
⊒ | \sqsupseteq | <math>\sqsupseteq</math> |
⋆ | \star | <math>\star</math> |
⊂ | \subset | <math>\subset</math> |
⊆ | \subseteq | <math>\subseteq</math> |
≻ | \succ | <math>\succ</math> |
≽ | \succeq | <math>\succeq</math> |
∑ | \sum | <math>\sum</math> |
⊃ | \supset | <math>\supset</math> |
⊇ | \supseteq | <math>\supseteq</math> |
√ | \surd | <math>\surd</math> |
↙ | \swarrow | <math>\swarrow</math> |
τ | \tau | <math>\tau</math> |
θ | \theta | <math>\theta</math> |
Θ | \Theta | <math>\Theta</math> |
× | \times | <math>\times</math> |
→ | \to | <math>\to</math> |
⊤ | \top | <math>\top</math> |
△ | \triangle | <math>\triangle</math> |
◁ | \triangleleft | <math>\triangleleft</math> |
▷ | \triangleright | <math>\triangleright</math> |
↑ | \uparrow | <math>\uparrow</math> |
⇑ | \Uparrow | <math>\Uparrow</math> |
↕ | \updownarrow | <math>\updownarrow</math> |
⇕ | \Updownarrow | <math>\Updownarrow</math> |
⊎ | \uplus | <math>\uplus</math> |
υ | \upsilon | <math>\upsilon</math> |
Υ | \Upsilon | <math>\Upsilon</math> |
ε | \varepsilon | <math>\varepsilon</math> |
φ | \varphi | <math>\varphi</math> |
ϖ | \varpi | <math>\varpi</math> |
ϱ | \varrho | <math>\varrho</math> |
ς | \varsigma | <math>\varsigma</math> |
ϑ | \vartheta | <math>\vartheta</math> |
⊢ | \vdash | <math>\vdash</math> |
⋮ | \vdots | <math>\vdots</math> |
∧ | \wedge | <math>\wedge</math> |
∨ | \vee | <math>\vee</math> |
∣ | \vert | <math>\vert</math> |
∥ | \Vert | <math>\Vert</math> |
℘ | \wp | <math>\wp</math> |
≀ | \wr | <math>\wr</math> |
ξ | \xi | <math>\xi</math> |
Ξ | \Xi | <math>\Xi</math> |
ζ | \zeta | <math>\zeta</math> |
⟧ | ]\!] | <math>]\!]</math> |
ο | o | <math>o</math> |